Developments in the design and management of the feedbase

www.csiro.au

Dean Thomas

CSIRO Agriculture and Food

21st August 2019

Summary

- WA mixed farming feedbase
- Feedbase innovation
- Modern Stubbles project
- Data to information for decision making

Improving the farm feedbase

- Composition of annual pastures?
- Increase/improve the area of perennials?
- Getting the most out of stubbles? Chaff piles?
- In-season tactics to improve feed access?
 - e.g. pasture phases, forage crops, dual-purpose crops, sacrificial crops
- Adjust stocking rates and timing (e.g. lambing) in the livestock enterprise?
- Changes to feedbase informed by long-term climate data?
- Forage conservation; grain, hay, silage?
- Use of digital decision support technologies?

Improving the amount, diversity, and quality of the feedbase

Feedbase in Mediterranean-type mixed farming

Feedbase survey

Annual feedbase of WA mixed farming businesses

- crop stubbles (cereal, lupins, canola)
- forage crops (e.g. vetch)
- supplementary feed (in paddock)
- green annual pastures
- dual purpose crops (wheat, canola)
- supplementary feed (feedlot)

- dry pasture
- perennial grasses/shrubs
- Livestock Dominant Crop Dominant

Forage for the autumn/winter feed gap

Forage for the autumn/winter feed gap

Feedbase diversity

Figure 5 Frequency of months when farm feed supply (including carry-over) is insufficient to meet livestock demand under a diversity of feedbase combinations under high stocking rate scenarios across six locations (a–f; see Figure 3). Dotted line indicates the lowest risk scenarios as the level of feedbase complexity increases. Codes indicate the combination of feed sources (see Table 1).

⁽Bell et al. 2018)

Dual-purpose canola, Esperance

(Photo credit: John Kirkegaard)

Early grazing Magenta wheat, Tammin

(Moir, 2014; Honours thesis)

Pasture-cropping, Moora

		Δ Pasture production (%)		Net increase (%)
Crop and location	Δ Crop production (%)	Winter	Summer	
<u>Buloke barley</u>				
Cunderdin	-14	-70	-29	58
Jerdacuttup	-14	-38	23	81
Karoonda	-25	-92	-36	24
Mingenew	-37	-28	90	53
Moora	-14	-19	56	89

(Lawes et al. 2014; Thomas et al. 2014)

Biserrula, Tammin

(Revell and Thomas, 2004)

Anameka[™] old man saltbush was selected from 60 000 plants for higher energy and 'palatability'

Compared to the mean of the collection...

- 15% units higher digestibility (OMD 64%)
- Preferred (higher voluntary intake)
- 8x more 'edible' biomass
- Easy to propagate
- No difference in field establishment & survival

(Norman et al. 2015)

Used science <u>& sheep to identify elite</u>

Pasture productivity and quality

Modern stubbles project

(Project team: Dean Thomas, Andrew Toovey, Elizabeth Hulm, Gonz Mata, Doraid Amanoel)

Header chaff management

Perceptions of grazing value of stubbles

Stubble type	Feed quality			Grazing intensity		
	High	Medium	Low	Heavy	Light	
Wheat stubble	XX	XXXXX	XX	XX		
Barley stubble	XXXXXXXXX	XX		XXX		
Canola stubble	XX	XX	XXX		Х	
Oat stubble	Х		XX			
Lupin/legume stubble	XXXXXXXXXXXX XXX			Х	XXX	

Stubble sample collection

Sorting the wheat from chaff...

Coarse (stem)

Medium

Fine

CSIR

Chaff quality

CSIRC

Ewe liveweight on wheat stubbles

Grazing behaviour tracking

On-animal sensors

GIS Map - Nokaning, MADFIG (Paddock Area: 148 ha)

Machine Learning and grazing stubbles

Research to practice change?

- What would you change on your farm given perfect knowledge of stubble feed value?
- Timing of supplementary feeding
- Maintaining ewes in better condition

Pasture API: data integration workflow

(Project Team: Dave Henry, Neville Herrmann, Gonzalo Mata, Dean Thomas, Eric Zurcher, Joe Pasenen)

Data to information

	Pasture Tracker	Home Profile Guide Contact	demo@pasturetracker.io Log out
Create New Site			
Site Name	Please enter a unique name	e for your site	
Longitude	longitude		
Latitude	latitude		
Farming System	Merino Ewes		٣
	Submit		

Track My Site

Site	Location (lon/lat)	Farm System	Forecast Period	Latest Update	Actions
Herne Hill	116.05,-31.84	Merino Ewes	1 July 2019 - 31 October 2019	12 hours ago 2019-07-18 04:08 +08:00	View Results
Ravensthorpe	119.94,-33.6	Merino Ewes	1 July 2019 - 31 October 2019	12 hours ago 2019-07-18 04:06 +08:00	View Results
Dongora	115.13,-29.31	Beef Cows	1 July 2019 - 31 October 2019	12 hours ago 2019-07-18 04:05 +08:00	View Results
Dalwallinu	116.66,-30.3	Wethers	1 July 2019 - 31 October 2019	12 hours ago 2019-07-18 04:05 +08:00	View Results
Arthur River	116.95,-33.27	Merino Ewes	1 July 2019 - 31 October 2019	12 hours ago 2019-07-18 04:06 +08:00	View Results
Dongora	115.13,-29.31	Merino Ewes	1 July 2019 - 31 October 2019	12 hours ago 2019-07-18 04:08 +08:00	View Results
Merredin	118.23,-31.48	Merino Ewes	1 July 2019 - 31 October 2019	12 hours ago 2019-07-18 04:06 +08:00	View Results
Mingenew	115.35,-28.9	Merino Ewes	1 July 2019 - 31 October 2019	Running	View Results

Feedbase forecasting

	Pasture Tracker			demo@pasturetracker.io	Log out
< Back					
Site Information					
Name	Arthur River				
Location (lon/lat)	116.95,-33.27 View in Google maps (opens in new tab)				
Farm System	Merino Ewes				
Forecast Period	1 July 2019 - 31 October 2019				
Last Updated	23 minutes ago 2019-08-16 11:44 +08:00				

Results

Pasture Tracker demo@pasturetracker.io < Back Site Information Name Ravensthorpe Location (lon/lat) 119.94.-33.6 View in Google maps (opens in new tab) Farm System Merino Ewes Forecast Period 1 July 2019 - 31 October 2019 Last Updated 24 minutes ago 2019-08-16 11:41 +08:00

Results

© 2019 Pasture Tracker

© 2019 Pasture Tracker

Data integration and decision making (e.g. grazing stubbles)

