Genetic Evaluation: Productivity, Efficiency and Profitability Colin Byrne, Sarah Blumer and Andrew Thompson

GOVERNMENT OF

WESTERN AUSTRALIA

Department of Primary Industries and Regional Development

Background

- Income and costs per hectare are the drivers of livestock profitability.
- Systems used to calculate \$/ha in blood line comparisons are flawed
- Based on live weight and the increase in energy requirements for heavier animals
 - lower stocking rate and profits for heavier genotypes
 - factors other than live weight can influence stocking rate

- Genotypes and sires differ in their ability to convert feed into energy reserves (fat) and lean tissue
 - storing and then mobilising fat tissue is 3 to 4 times as efficient as recycling lean
- Adult ewes with a higher proportion of body fat
 - require less feed (0.8 MJ/d per ½ CS)
 - lose less weight (30 g/d per ½ CS)

#GEPEP - project objectives

- Measure differences between sire groups
 - growth and production
 - feed intake and liveweight change
 - body composition
 - feed and liveweight efficiency
- Evaluate potential effects of sire on profit per head and per hectare
- Identify proxies for feed intake and body composition

Methodology

- MLP wether progeny
 - Pingelly site
 - 2016 and 2017 drop
- 4 cohorts, n = 640 progeny (min n = 15 / sire)

• 2019/2020 - testing 15 sires in each - link sires between years

Methodology

Day 0

DEXA scan

- Fat %
- Whole body energy

Blood sample

Deuterium injection

Day 35

DEXA scan

- Fat %
- Whole body energy

Blood sample

Deuterium injection

Day 70

DEXA scan

- Fat %
- Whole body energyBlood sampleDeuterium injection

Methodology

- Proxies roll out to paddock testing
- Feed efficiency daily measurement of intake, and lwc
 - Composition
 - CO2
 - Sensor data
- Composition DXA
 - Condition score
 - Industry standard ultrasound
 - Deuterium heavy water
 - Leptin

Genetic Evaluation: Productivity, Efficiency and Profitability Colin Byrne, Sarah Blumer and Andrew Thompson

WESTERN AUSTRALIA

Department of Primary Industries and Regional Development

Murdoch UNIVERSITY

- Range in volunteered liveweight and condition score
 - 1 CS and 8kg
- Diet treatments successful
- Effects on WBE?
 - Variable
 - LW gain ≠ energy gain
 - 1kg fat = 35.9mJ and 1kg lean = 5.31mJ

Murdoch UNIVERSITY

- There are differences between sire groups for liveweight and condition score
- Differences in energy depletion when feed is restricted
- Differences in energy repletion when feed is readily available
- There are sire differences in whole body energy composition
 - on-going research will investigate differences in efficiency of energy utilization
- Proxies for the prediction of whole-body energy in sheep are being tested

Acknowledgements

Support provided by Woolgrowers through sire evaluation entry fees, site committee in-kind contributions, and sponsors of AMSEA.

The Australian Government who supports R&D, plus marketing of Australian wool.

WESTERN AUSTRALIA

Department of Primary Industries and Regional Development

